skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "He, Rui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 10, 2026
  2. Abstract Optical phonon engineering through nonlinear effects has been utilized in ultrafast control of material properties. However, nonlinear optical phonons typically exhibit rapid decay due to strong mode-mode couplings, limiting their effectiveness in temperature or frequency sensitive applications. Here we report the observation of long-lived nonlinear optical phonons through the spontaneous formation of phonon frequency combs in the van der Waals material CrXTe3(X=Ge, Si) using high-resolution Raman scattering. Unlike conventional optical phonons, the highestAgmode in CrGeTe3splits into equidistant, sharp peaks forming a frequency comb that persists for hundreds of oscillations and survives up to 200K. These modes correspond to localized oscillations of Ge2Te6clusters, isolated from Cr hexagons, behaving as independent quantum oscillators. Introducing a cubic nonlinear term to the harmonic oscillator model, we simulate the phonon time evolution and successfully replicate the observed comb structure. Similar frequency comb behavior is observed in CrSiTe3, demonstrating the generalizability of this phenomenon. Our findings demonstrate that Raman scattering effectively probes high-frequency nonlinear phonon modes, offering insight into the generation of long-lived, tunable phonon frequency combs with potential applications in ultrafast material control and phonon-based technologies. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  3. Free, publicly-accessible full text available September 1, 2026
  4. Recent helicity−resolved magneto−Raman spectroscopy measurement demonstrates large effective phonon magnetic moments of ~2.5 $$\mu_B$$ in monolayer MoS$$_2$$, highlighting resonant excitation of bright excitons as a feasible route to activate $$\Gamma$$−point circularly polarized phonons in transition metal dichalcogenides. However, a microscopic picture of this intriguing phenomenon remains lacking. In this work, we show that an orbital transition between the split conduction bands ($$\Delta_0$$ = 4 meV) of MoS$$_2$$ couples to the doubly degenerate $$E^{′′}$$ phonon mode ($$\Omega_0$$ = 33 meV), forming two hybridized states. Our phononic and electronic Raman scattering measurements capture these two states: (i) one with predominantly phonon contribution in the helicity−switched channels, and (ii) one with primarily orbital contribution in the helicity−conserved channels. An orbital−phonon coupling model successfully reproduces the large effective magnetic moments of the circularly polarized phonons and explains their thermodynamic properties. Strikingly, the Raman mode from the orbital transition is superimposed on a strong quasi−elastic scattering background, indicating the presence of spin fluctuations. As a result, the electrons excited to the conduction bands through the exciton exhibit paramagnetic behavior although MoS$$_2$$ is generally considered as a non-magnetic material. By depositing nanometer−thickness nickel thin films on monolayer MoS$$_2$$, we tune the electronic structure so that the A exciton perfectly overlaps with the 633 nm laser. The optimization of resonance excitation leads to pronounced tunability of the orbital−phonon hybridized states. Our results generalize the orbital−phonon coupling model of effective phonon magnetic moments to material systems beyond the paramagnets and magnets. 
    more » « less
  5. Realization of large effective phonon magnetic moment in monolayer MoS$$_2$$ has established an important route for exploring intriguing magnetic phenomena in a nonmagnetic material. The sizable coupling between the orbital transition and the circularly polarized phonon results in the large effective phonon magnetic moment. In this work, using magneto-Raman spectroscopy, we investigate substitutional doping of magnetic atoms as a tuning knob of the electronic and phononic properties of MoS$$_2$$. We show that Fe-doping polarizes the spin of the conduction bands and introduces a localized Fe band underneath the conduction band. As a result, an additional orbital transition between the Mo 4$$d$$ and Fe 3$$d$$ states emerges, producing an orbital-phonon hybridized mode at 283 cm$$^{-1}$$. Our magnetic field dependent measurements demonstrate that this new mode carries 2.8 $$\mu_B$$ effective phonon magnetic moment, which is comparable to that of the undoped MoS$$_2$$. Moreover, even though a long-range magnetic order is absent in Fe-doped MoS$$_2$$, the local magnetic moment of Fe modifies the nature of the spin fluctuation, producing monotonically increasing quasielastic scattering spectral weight as temperature decreases. Our results highlight two-dimensional dilute magnetic semiconductors synthesized by substitutional doping as a promising material platform to manipulate the phonon magnetic moment through orbital-phonon coupling. 
    more » « less
  6. Free, publicly-accessible full text available July 1, 2026
  7. Abstract Realization of large effective phonon magnetic moment in monolayer MoS2has established an important route for exploring intriguing magnetic phenomena in a nonmagnetic material. The sizable coupling between the orbital transition and the circularly polarized phonon results in the large effective phonon magnetic moment. In this work, using magneto-Raman spectroscopy, we investigate substitutional doping of magnetic atoms as a tuning knob of the electronic and phononic properties of MoS2. We show that Fe-doping polarizes the spin of the conduction bands and introduces a localized Fe band underneath the conduction band. As a result, an additional orbital transition between the Mo 4dand Fe 3dstates emerges, producing an orbital-phonon hybridized mode at 283 cm−1. Our magnetic field dependent measurements demonstrate that this new mode carries 2.8 μ B effective phonon magnetic moment, which is comparable to that of the undoped MoS2. Moreover, even though a long-range magnetic order is absent in Fe-doped MoS2, the local magnetic moment of Fe modifies the nature of the spin fluctuation, producing monotonically increasing quasielastic scattering spectral weight as temperature decreases. Our results highlight two-dimensional dilute magnetic semiconductors synthesized by substitutional doping as a promising material platform to manipulate the phonon magnetic moment through orbital-phonon coupling. 
    more » « less
    Free, publicly-accessible full text available September 19, 2026
  8. Abstract In recent years, semiconductors, electronics, optics, and various other industries have seen a significant surge in the use of sapphire materials, driven by their exceptional mechanical and chemical properties. The machining of sapphire surfaces plays a crucial role in all these applications. However, due to sapphires’ exceptionally high hardness (Mohs hardness of 9, Vickers hardness of 2300) and brittleness, machining them often presents challenges such as microcracking and chipping of the workpiece, as well as significant tool wear, making sapphires difficult to cut. To enhance the machining efficiency and machined surface integrity, ultrasonic vibration-assisted (UV-A) machining of sapphire has already been studied, showing improved performance with lower cutting force, better surface finish, and extended tool life. Scribing tests using a single-diamond tool not only are an effective method to understand the material removal mechanism and deformation characteristics during such UV-A machining processes but also can be used as a potential process for separating IC chips from wafers. This paper presents a comprehensive study of the UV-A scribing process, aiming to develop an understanding of sapphire’s material removal mechanism under varying ultrasonic power levels and cutting tool geometries. In this experimental investigation, the effect of five different levels of ultrasonic power and three different cutting tool tip angles at various feeding depths on the scribe-induced features of the sapphire surface has been presented with a quantitative and qualitative comparison. The findings indicate that at feeding depths less than 6 μm, UV-A scribing with 40–80% ultrasonic power can reduce cutting force up to 50% and thus improve scribe quality. However, between feeding depths of 6 to 10 μm, this advantage of using ultrasonic vibration gradually diminishes. Additionally, UV-A scribing with a smaller tool tip angle (60°) was found to lower cutting force by 65% and improve scribe quality, effectively inhibiting residual stress formation and microcrack propagation. Furthermore, UV-A scribing also facilitated higher critical feeding depths at around 10 μm, compared to 6 μm in conventional scribing. 
    more » « less